High School Biology: Cell Organelles
Biology Books


Facebook Twitter

Cell Organelles

Nucleus This is where the DNA is kept and RNA is transcribed. RNA is transported out of the nucleus through the nuclear pores. Proteins needed inside the nucleus are transported in through the nuclear pores. The nucleolus is usually visible as a dark spot in the nucleus (note the dark nucleolus in this electron microscope photo of a nucleus), and is the site of ribosome formation.

Ribosomes Ribosomes are the sites of protein synthesis, where RNA is translated into protein. Protein synthesis is extremely important to cells, and so large numbers of ribosomes are found throughout cells (often numbering in the hundreds or thousands). Ribosomes exist floating freely in the cytoplasm, and also bound to the endoplasmic reticulum (ER). ER bound to ribosomes is called rough ER because the ribosomes appear as black dots on the ER in electron microscope photos, giving the ER a rough texture. These organelles are quite small, made up of 50 proteins and several long RNAs intricately bound together. Ribosomes have no membrane. Ribosomes disassemble into two subunits when not actively synthesizing protein..

Cell References
Cell Division
Cell Metabolism
Cell Reproduction
Cell Transport
Cloning
Molecular Biology
Onion Cell Lab
Osmosis
Mitochondria Mitochondria (singular: mitochondrion) are the sites of aerobic respiration, and generally are the major energy production center in eukaryotes. Mitochondria have two membranes, an inner and an outer, clearly visible in this electron microscope photo of a mitochondrion. Note the reticulations, or many infoldings, of the inner membrane, This serves to increase the surface area of membrane on which membrane- bound reactions can take place. The existence of this double membrane has led many biologists to theorize that mitochondria are the descendants of some bacteria that was endocytosed by a larger cell billions of years ago, but not digested. This fascinating theory of symbiosis, which might lend an explanation to the development of eukaryotic cells, has additional supporting evidence. Mitochondria have their own DNA and their own ribosomes; and those ribosomes are more similar to bacterial ribosomes than to eukaryotic ribosomes..

Chloroplasts These organelles are the site of photosynthesis in plants and other photosynthesizing organisms. They also have a double membrane. There is a more complete description of the chloroplast here, in the chapter on photosynthesis..

Endoplasmic Reticulum (ER) The ER is the transport network for molecules targeted for certain modifications and specific final destinations, as opposed to molecules that are destined to float freely in the cytoplasm. There are two types of ER, rough and smooth. Rough ER has ribosomes attached to it, and smooth ER does not.

Golgi apparatus This organelle modifies molecules and packages them into small membrane bound sacs called vesicles. These sacs can be targetted at various locations in the cell and even to its exterior.

Lysosome This organelle digests waste materials and food within the cell, breaking down molecules into their base components with strong digestive enzymes. Here we can see an advantage of the compartmentalization of the eukaryotic cell: the cell could not support such destructive enzymes if they were not contained in a membrane-bound lysosome.